Molecular oscillation of Per1 and Per2 genes in the rodent brain: an in situ hybridization and molecular biological study.

نویسندگان

  • Daisuke Matsui
  • Seiichi Takekida
  • Hitoshi Okamura
چکیده

The circadian rhythm is originally generated by a transcription-translation based oscillatory loop where Per1 and Per2 genes locate in its central. In the rat brain, rhythmic expressions of Per1 and Per2 were observed not only in neurons of the hypothalamic suprachiasmatic nucleus (SCN) but also in those of non-SCN regions including the cerebral cortex. The E-box enhancer elements possible to regulate transcription of Per1 and Per2 genes were highly conserved in rats and mice. When E-box-activating transcription factors, CLOCK and BMAL1, were coexpressed, each of both proteins showed two molecular forms. The presence of these higher molecular weight forms seems to be correlated with the E-box mediated transcription activation. This mechanism might not be involved in the PER2 mediated suppression of E-box, since adding PER2 did not change the content of the higher molecular forms of CLOCK and BMAL1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary.

Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental ...

متن کامل

Period Genes in Degu and Rat 1 Period Genes in Degu and Rat 2

Recent data suggest that both nocturnal and diurnal mammals generate circadian rhythms using similarly phased feedback loops involving Period genes in the suprachiasmatic nuclei (SCN) of the hypothalamus. These molecular oscillations also exist in the brain outside of the SCN, but the relationship between SCN and extra-SCN oscillations is unclear. We hypothesized that a comparison of “diurnal” ...

متن کامل

Period gene expression in the diurnal degu (Octodon degus) differs from the nocturnal laboratory rat (Rattus norvegicus).

Recent data suggest that both nocturnal and diurnal mammals generate circadian rhythms using similarly phased feedback loops involving Period genes in the suprachiasmatic nuclei (SCN) of the hypothalamus. These molecular oscillations also exist in the brain outside of the SCN, but the relationship between SCN and extra-SCN oscillations is unclear. We hypothesized that a comparison of "diurnal" ...

متن کامل

Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus.

Rhythmicity of the rat suprachiasmatic nucleus (SCN), a site of the circadian clock, develops prenatally. A molecular clockwork responsible for the rhythmicity consists of clock genes and their negative and positive transcriptional-translational feedback loops. The aim of the present study was to discover the development of the clockwork during ontogenesis. Daily profiles of Per1, Per2, Cry1, B...

متن کامل

Positive Autoregulation Delays the Expression Phase of Mammalian Clock Gene Per2

In mammals, cellular circadian rhythms are generated by a transcriptional-translational autoregulatory network that consists of clock genes that encode transcriptional regulators. Of these clock genes, Period1 (Per1) and Period2 (Per2) are essential for sustainable circadian rhythmicity and photic entrainment. Intriguingly, Per1 and Per2 mRNAs exhibit circadian oscillations with a 4-hour phase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Kobe journal of medical sciences

دوره 51 5-6  شماره 

صفحات  -

تاریخ انتشار 2005